from itertools import combinations import time import threading from collections import defaultdict import math from multiprocessing import Pool # 配置参数(优化阈值) TARGET =80082 # 目标值 BASE_VALUES = [38.5,44,61,70.5,75.5,93] # 基础系数列表 FLUCTUATION = 1.0 # 系数波动范围 MAX_SOLUTIONS = 3 # 每个组合的最大解数量 SOLVER_TIMEOUT = 180 # 求解超时时间(秒) THREE_VAR_THRESHOLD = 259000 # 使用三个变量的阈值(调整为259000) PRODUCT_RANGE_THRESHOLD = 125000 # 乘积范围限制阈值(调整为125000) HIGH_TARGET_THRESHOLD = 259000 # 更高目标值阈值(调整为259000) SHOW_PROGRESS = True # 是否显示进度 MAX_SOLUTIONS_PER_COMB = 100 # 每个组合的最大解数量,用于提前终止 USE_MULTIPROCESSING = True # 是否使用多进程加速 def is_valid_product(p): """检查单个乘积是否在有效范围内""" if TARGET > PRODUCT_RANGE_THRESHOLD: # TARGET > 125000 if TARGET > HIGH_TARGET_THRESHOLD: # TARGET > 259000 return p <= 125000 # 单个乘积上限 else: # 125000 < TARGET <= 259000 return 74000 <= p <= 125000 # 单个乘积范围 else: # TARGET <= 125000 return True # 小目标值取消所有限制 def find_single_variable_solutions(values): """查找单个数的解(a*x = TARGET)""" solutions = [] for a in values: quotient = TARGET / a if quotient != int(quotient): continue x = int(quotient) if 1 <= x <= 10000 and is_valid_product(a * x): solutions.append((a, x)) if len(solutions) >= MAX_SOLUTIONS: break return solutions def find_two_variable_solutions(values): """优化的双变量求解算法""" solutions = defaultdict(list) for i, a in enumerate(values): for b in values[i:]: seen_xy = set() if max_x < min_x: continue x_count = max_x - min_x + 1 x_step = max(1, x_count // 1000) for x in range(min_x, max_x + 1, x_step): remainder = TARGET - a * x if remainder < b: break if remainder > b * 10000: continue if remainder % b == 0: y = remainder // b if 1 <= y <= 10000 and is_valid_product(b * y): xy_pair = (x, y) if a <= b else (y, x) if xy_pair not in seen_xy: seen_xy.add(xy_pair) solutions[(a, b)].append((a, x, b, y)) if len(solutions[(a, b)]) >= MAX_SOLUTIONS_PER_COMB: break return solutions def process_three_var_combination(args): """处理三变量组合的辅助函数,用于并行计算""" a, b, c, value_ranges, target = args solutions = [] seen_xyz = set() min_x, max_x = value_ranges[a] x_count = max_x - min_x + 1 x_step = max(1, x_count // 1000) for x in range(min_x, max_x + 1, x_step): ax = a * x if not is_valid_product(ax): continue remainder1 = target - ax if remainder1 < 0: break if max_y < min_y: continue y_count = max_y - min_y + 1 y_step = max(1, y_count // 100) for y in range(min_y, max_y + 1, y_step): by = b * y if not is_valid_product(by): continue remainder2 = remainder1 - by if remainder2 < 0: break if remainder2 > c * 10000: continue if remainder2 % c == 0: z = remainder2 // c if 1 <= z <= 10000 and is_valid_product(c * z): xyz_tuple = tuple(sorted([x, y, z])) if xyz_tuple not in seen_xyz: seen_xyz.add(xyz_tuple) solutions.append((a, x, b, y, c, z)) if len(solutions) >= MAX_SOLUTIONS_PER_COMB: return solutions return solutions def find_three_variable_solutions(values): """优化的三变量求解算法,使用并行计算""" solutions = defaultdict(list) sorted_values = sorted(values) # 预计算每个系数的有效范围 value_ranges = {} for a in sorted_values: value_ranges[a] = (min_x, max_x) combinations_list = [] for i, a in enumerate(sorted_values): for j in range(i + 1, len(sorted_values)): b = sorted_values[j] for k in range(j + 1, len(sorted_values)): c = sorted_values[k] combinations_list.append((a, b, c, value_ranges, TARGET)) if USE_MULTIPROCESSING: with Pool() as pool: results = pool.map(process_three_var_combination, combinations_list) for i, (a, b, c, _, _) in enumerate(combinations_list): if results[i]: solutions[(a, b, c)] = results[i] else: total_combinations = len(combinations_list) for i, (a, b, c, _, _) in enumerate(combinations_list): res = process_three_var_combination((a, b, c, value_ranges, TARGET)) if res: solutions[(a, b, c)] = res if SHOW_PROGRESS and i % 10 == 0: print(f"\r三变量组合进度: {i}/{total_combinations} 组", end='') if SHOW_PROGRESS and not USE_MULTIPROCESSING: print(f"\r三变量组合进度: {total_combinations}/{total_combinations} 组 - 完成") return solutions def find_balanced_solutions(solutions, var_count, num=2): """从所有解中筛选出最平衡的解""" if var_count == 1 or not solutions: return solutions balanced = [] for sol in solutions: vars = sol[1::2] # 获取解中的变量值 diff = max(vars) - min(vars) # 计算变量之间的最大差值 balanced.append((diff, sol)) # 按差值排序,返回差值最小的解 return [s for _, s in sorted(balanced, key=lambda x: x[0])[:num]] def find_original_solutions(solutions, balanced_solutions, num=3): """从剩余解中获取原始顺序的解""" if not solutions: return [] remaining = [s for s in solutions if s not in balanced_solutions] return remaining[:num] def display_solutions(solutions_dict, var_count): """优化的解显示函数""" if not solutions_dict: return print(f"\n找到 {len(solutions_dict)} 组{var_count}变量解:") for i, (coeffs, pair_solutions) in enumerate(sorted(solutions_dict.items()), 1): balanced = find_balanced_solutions(pair_solutions, var_count) original = find_original_solutions(pair_solutions, balanced) all_display = balanced + original if var_count == 1: a = coeffs print(f"\n{i}. 组合: a={a} ({len(pair_solutions)} 个有效解)") elif var_count == 2: a, b = coeffs print(f"\n{i}. 组合: a={a}, b={b} ({len(pair_solutions)} 个有效解)") else: a, b, c = coeffs print(f"\n{i}. 组合: a={a}, b={b}, c={c} ({len(pair_solutions)} 个有效解)") for j, sol in enumerate(all_display, 1): tag = "[平衡解]" if j <= len(balanced) else "[原始解]" if var_count == 1: a, x = sol print(f" {j}. x={x}, a*x={a*x:.1f}, 总和={a*x:.1f} {tag}") elif var_count == 2: a, x, b, y = sol print(f" {j}. x={x}, y={y}, a*x={a*x:.1f}, b*y={b*y:.1f}, 总和={a*x + b*y:.1f} {tag}") else: a, x, b, y, c, z = sol print(f" {j}. x={x}, y={y}, z={z}, " f"a*x={a*x:.1f}, b*y={b*y:.1f}, c*z={c*z:.1f}, " f"总和={a*x + b*y + c*z:.1f} {tag}") def run_with_timeout(func, args=(), kwargs=None, timeout=SOLVER_TIMEOUT): """运行函数并设置超时限制""" if kwargs is None: kwargs = {} result = [] error = [] def wrapper(): try: result.append(func(*args, **kwargs)) except Exception as e: error.append(e) thread = threading.Thread(target=wrapper) thread.daemon = True thread.start() thread.join(timeout) if thread.is_alive(): print(f"警告: {func.__name__} 超时({timeout}秒),跳过此方法") return None if error: return result[0] def main(): print(f"目标值: {TARGET}") # 生成波动后的系数 FLUCTUATED_VALUES = [round(v - FLUCTUATION, 1) for v in BASE_VALUES] # 尝试基础系数 print(f"\n==== 尝试基础系数 ====") # 目标值75085 < 259000,会按顺序尝试单、双、三变量解 base_solutions = { 'single': run_with_timeout(find_single_variable_solutions, args=(BASE_VALUES,)), 'two': run_with_timeout(find_two_variable_solutions, args=(BASE_VALUES,)), 'three': [] } has_solution = False # 显示单变量解 if base_solutions['single']: has_solution = True display_solutions({a: [sol] for a, sol in zip(BASE_VALUES, base_solutions['single']) if sol}, 1) # 显示双变量解 if base_solutions['two'] and len(base_solutions['two']) > 0: has_solution = True display_solutions(base_solutions['two'], 2) # 单变量和双变量都无解时,尝试三变量解 if not has_solution: print(f"\n==== 单变量和双变量无解,尝试三变量解 ====") base_solutions['three'] = run_with_timeout(find_three_variable_solutions, args=(BASE_VALUES,)) if base_solutions['three'] and len(base_solutions['three']) > 0: has_solution = True display_solutions(base_solutions['three'], 3) if has_solution: print(f"\n使用基础系数列表,共找到有效解") return # 如果基础系数没有找到解,尝试波动系数 print(f"\n==== 尝试波动系数 ====") fluctuated_solutions = { 'single': run_with_timeout(find_single_variable_solutions, args=(FLUCTUATED_VALUES,)), 'two': run_with_timeout(find_two_variable_solutions, args=(FLUCTUATED_VALUES,)), 'three': [] } has_solution = False # 显示单变量解 if fluctuated_solutions['single']: has_solution = True display_solutions({a: [sol] for a, sol in zip(FLUCTUATED_VALUES, fluctuated_solutions['single']) if sol}, 1) # 显示双变量解 if fluctuated_solutions['two'] and len(fluctuated_solutions['two']) > 0: has_solution = True display_solutions(fluctuated_solutions['two'], 2) # 单变量和双变量都无解时,尝试三变量解 if not has_solution: print(f"\n==== 单变量和双变量无解,尝试三变量解 ====") fluctuated_solutions['three'] = run_with_timeout(find_three_variable_solutions, args=(FLUCTUATED_VALUES,)) if fluctuated_solutions['three'] and len(fluctuated_solutions['three']) > 0: has_solution = True display_solutions(fluctuated_solutions['three'], 3) if has_solution: print(f"\n使用波动系数列表,共找到有效解") return # 如果所有系数集都没有找到解 print("\n没有找到符合条件的解,即使使用波动后的系数列表。") if __name__ == "__main__": main() print(f"\n总耗时: {time.time() - start_time:.2f}秒")
Standard input is empty
目标值: 80082 ==== 尝试基础系数 ==== 找到 12 组2变量解: 1. 组合: a=38.5, b=70.5 (8 个有效解) 1. x=855, y=669.0, a*x=32917.5, b*y=47164.5, 总和=80082.0 [平衡解] 2. x=573, y=823.0, a*x=22060.5, b*y=58021.5, 总和=80082.0 [平衡解] 3. x=9, y=1131.0, a*x=346.5, b*y=79735.5, 总和=80082.0 [原始解] 4. x=291, y=977.0, a*x=11203.5, b*y=68878.5, 总和=80082.0 [原始解] 5. x=1137, y=515.0, a*x=43774.5, b*y=36307.5, 总和=80082.0 [原始解] 2. 组合: a=38.5, b=75.5 (7 个有效解) 1. x=623, y=743.0, a*x=23985.5, b*y=56096.5, 总和=80082.0 [平衡解] 2. x=925, y=589.0, a*x=35612.5, b*y=44469.5, 总和=80082.0 [平衡解] 3. x=19, y=1051.0, a*x=731.5, b*y=79350.5, 总和=80082.0 [原始解] 4. x=321, y=897.0, a*x=12358.5, b*y=67723.5, 总和=80082.0 [原始解] 5. x=1227, y=435.0, a*x=47239.5, b*y=32842.5, 总和=80082.0 [原始解] 3. 组合: a=44, b=61 (30 个有效解) 1. x=747, y=774, a*x=32868.0, b*y=47214.0, 总和=80082.0 [平衡解] 2. x=808, y=730, a*x=35552.0, b*y=44530.0, 总和=80082.0 [平衡解] 3. x=15, y=1302, a*x=660.0, b*y=79422.0, 总和=80082.0 [原始解] 4. x=76, y=1258, a*x=3344.0, b*y=76738.0, 总和=80082.0 [原始解] 5. x=137, y=1214, a*x=6028.0, b*y=74054.0, 总和=80082.0 [原始解] 4. 组合: a=44, b=70.5 (13 个有效解) 1. x=660, y=724.0, a*x=29040.0, b*y=51042.0, 总和=80082.0 [平衡解] 2. x=801, y=636.0, a*x=35244.0, b*y=44838.0, 总和=80082.0 [平衡解] 3. x=96, y=1076.0, a*x=4224.0, b*y=75858.0, 总和=80082.0 [原始解] 4. x=237, y=988.0, a*x=10428.0, b*y=69654.0, 总和=80082.0 [原始解] 5. x=378, y=900.0, a*x=16632.0, b*y=63450.0, 总和=80082.0 [原始解] 5. 组合: a=44, b=75.5 (12 个有效解) 1. x=715, y=644.0, a*x=31460.0, b*y=48622.0, 总和=80082.0 [平衡解] 2. x=564, y=732.0, a*x=24816.0, b*y=55266.0, 总和=80082.0 [平衡解] 3. x=111, y=996.0, a*x=4884.0, b*y=75198.0, 总和=80082.0 [原始解] 4. x=262, y=908.0, a*x=11528.0, b*y=68554.0, 总和=80082.0 [原始解] 5. x=413, y=820.0, a*x=18172.0, b*y=61910.0, 总和=80082.0 [原始解] 6. 组合: a=44, b=93 (20 个有效解) 1. x=573, y=590, a*x=25212.0, b*y=54870.0, 总和=80082.0 [平衡解] 2. x=666, y=546, a*x=29304.0, b*y=50778.0, 总和=80082.0 [平衡解] 3. x=15, y=854, a*x=660.0, b*y=79422.0, 总和=80082.0 [原始解] 4. x=108, y=810, a*x=4752.0, b*y=75330.0, 总和=80082.0 [原始解] 5. x=201, y=766, a*x=8844.0, b*y=71238.0, 总和=80082.0 [原始解] 7. 组合: a=61, b=70.5 (9 个有效解) 1. x=624, y=596.0, a*x=38064.0, b*y=42018.0, 总和=80082.0 [平衡解] 2. x=483, y=718.0, a*x=29463.0, b*y=50619.0, 总和=80082.0 [平衡解] 3. x=60, y=1084.0, a*x=3660.0, b*y=76422.0, 总和=80082.0 [原始解] 4. x=201, y=962.0, a*x=12261.0, b*y=67821.0, 总和=80082.0 [原始解] 5. x=342, y=840.0, a*x=20862.0, b*y=59220.0, 总和=80082.0 [原始解] 8. 组合: a=61, b=75.5 (8 个有效解) 1. x=590, y=584.0, a*x=35990.0, b*y=44092.0, 总和=80082.0 [平衡解] 2. x=439, y=706.0, a*x=26779.0, b*y=53303.0, 总和=80082.0 [平衡解] 3. x=137, y=950.0, a*x=8357.0, b*y=71725.0, 总和=80082.0 [原始解] 4. x=288, y=828.0, a*x=17568.0, b*y=62514.0, 总和=80082.0 [原始解] 5. x=741, y=462.0, a*x=45201.0, b*y=34881.0, 总和=80082.0 [原始解] 9. 组合: a=61, b=93 (14 个有效解) 1. x=549, y=501, a*x=33489.0, b*y=46593.0, 总和=80082.0 [平衡解] 2. x=456, y=562, a*x=27816.0, b*y=52266.0, 总和=80082.0 [平衡解] 3. x=84, y=806, a*x=5124.0, b*y=74958.0, 总和=80082.0 [原始解] 4. x=177, y=745, a*x=10797.0, b*y=69285.0, 总和=80082.0 [原始解] 5. x=270, y=684, a*x=16470.0, b*y=63612.0, 总和=80082.0 [原始解] 10. 组合: a=70.5, b=75.5 (8 个有效解) 1. x=503, y=591.0, a*x=35461.5, b*y=44620.5, 总和=80082.0 [平衡解] 2. x=654, y=450.0, a*x=46107.0, b*y=33975.0, 总和=80082.0 [平衡解] 3. x=50, y=1014.0, a*x=3525.0, b*y=76557.0, 总和=80082.0 [原始解] 4. x=201, y=873.0, a*x=14170.5, b*y=65911.5, 总和=80082.0 [原始解] 5. x=352, y=732.0, a*x=24816.0, b*y=55266.0, 总和=80082.0 [原始解] 11. 组合: a=70.5, b=93 (19 个有效解) 1. x=508, y=476.0, a*x=35814.0, b*y=44268.0, 总和=80082.0 [平衡解] 2. x=446, y=523.0, a*x=31443.0, b*y=48639.0, 总和=80082.0 [平衡解] 3. x=12, y=852.0, a*x=846.0, b*y=79236.0, 总和=80082.0 [原始解] 4. x=74, y=805.0, a*x=5217.0, b*y=74865.0, 总和=80082.0 [原始解] 5. x=136, y=758.0, a*x=9588.0, b*y=70494.0, 总和=80082.0 [原始解] 12. 组合: a=75.5, b=93 (6 个有效解) 1. x=414, y=525.0, a*x=31257.0, b*y=48825.0, 总和=80082.0 [平衡解] 2. x=600, y=374.0, a*x=45300.0, b*y=34782.0, 总和=80082.0 [平衡解] 3. x=42, y=827.0, a*x=3171.0, b*y=76911.0, 总和=80082.0 [原始解] 4. x=228, y=676.0, a*x=17214.0, b*y=62868.0, 总和=80082.0 [原始解] 5. x=786, y=223.0, a*x=59343.0, b*y=20739.0, 总和=80082.0 [原始解] 使用基础系数列表,共找到有效解 总耗时: 0.01秒